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Abstract

There are many numerical methods for solving partial different equations (PDEs) on manifolds
such as classical implicit, finite difference, finite element, and isogeometric analysis methods
which aim at improving the interoperability between finite element method and computer aided
design (CAD) software. However, these approaches have difficulty when the domain has singu-
larities since the solution at the singularity may be multivalued. This paper develops a novel
numerical approach to solve elliptic PDEs on real, closed, connected, orientable, and almost
smooth algebraic curves and surfaces. Our method integrates numerical algebraic geometry,
differential geometry, and a finite difference scheme which is demonstrated on several examples.
Keywords. Partial differential equations, elliptic equations, numerical algebraic geometry, real
algebraic geometry
AMS Subject Classification. 65N06, 65H14, 68W30

1 Introduction

Advances in fluid dynamics, biology, material science, and other disciplines have promoted the
study of partial differential equations (PDEs) defined on various manifolds. Numerous numeri-
cal methods have been developed to solve these PDEs, such as classical implicit [5, 6, 21], finite
difference [20,25,27], finite element [13, 16, 22], and parameterization methods [24, 26]. In this pa-
per, we specifically consider linear elliptic PDEs defined on closed algebraic curves and surfaces,
which are described implicitly as the solution to a system of polynomial equations. We consider
the well-posedness of the problem when the domain has singularities corresponding to problems in
which variational methods can not be applied. In particular, when the domain is a real closed alge-
braic curve, we can always reduce the problem to solving an ordinary differential equation (ODE)
described in terms of the arc length. Numerically, we can construct a meshing of the curve which
is uniform in arc length via numerical algebraic geometry [2, 8]. Such an approach is not limited
to smooth curves nor when an a priori global parameterization of the curve is known. From the
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meshing, we introduce a local tangential parameterization and embed it in a finite difference scheme
to numerically solve the problem. A similar approach is extended to real closed algebraic surfaces
which are almost smooth, i.e., have at most finitely many singularities.

The linear elliptic PDEs under consideration have the form

´∆u` c ¨ u “ f on Ω (1)

where Ω is a closed, connected, and orientable d-dimensional algebraic set in Rn where 0 ă d ă n.
Thus, Ω is described by the solution set of a system of polynomial equations F “ 0 on Rn. Curves
have d “ 1 while surfaces have d “ 2. For example, the unit circle in R2 as shown in Fig. 1(a) is a
curve defined by the solution set of the polynomial equation x2 ` y2 ´ 1 “ 0 while the unit sphere
in R3 is a surface defined by the solution set of the polynomial equation x2 ` y2 ` z2 ´ 1 “ 0. The
operator ∆ is the Laplace-Beltrami operator on Ω while c and f are functions independent of u.
With this setup, the dimension of the tangent space at each point in Ω is at least d. The smooth
points of Ω are the points where the dimension of the tangent space is equal to d while the singular
points are those where the dimension of the tangent space is larger than d. For curves (d “ 1), the
number of singular points is always finite, e.g., the lemniscate of Gerono showed in Fig. 1(b) has
one singular point. We only consider surfaces (d “ 2) where the number of singular points is finite,
called almost smooth surfaces. The horn torus shown in Fig. 1(c) is an almost smooth surface with
one singular point while the Whitney umbrella shown in Fig. 1(d) is not an almost smooth surface
since it has a line of singularities.

For any d, if there are no singular points, then Ω is said to be smooth, i.e., a manifold, and
there are many existing numerical methods, e.g., [4–6, 10, 13, 16, 20–22, 24–27], for solving (1). For
example, [13] considered finite element methods for solving on triangulated surfaces and implicit
surface methods using a level set description of the surface. Variational techniques for solving
on smooth surfaces based on splines and non-uniform B-splines (NURBS) are reviewed in [4].
Recently, [10] established the theoretical framework to analyze cut finite element methods for the
Laplace-Beltrami operator defined on a manifold. These methods focus on smooth surfaces which
either can be parameterized or implicitly represented by level sets. In the case of the implicit
surface methods, a discretization of the space where the manifold is embedded in is required, which
can be inefficient when the codimension, i.e., n´ d, is high.

To the best of our knowledge, little to no studies have been done to investigate the existence
of a theoretical or numerical solution on curves with singularities. One possible reason for this is
that the solution u to (1) need not take a single value at a singularity of Ω due to the presence
of multiple local irreducible components at a singularity, e.g., the lemniscate of Gerono shown in
Fig. 1(b) has two local irreducible components at the singular point. As an illustration, Figure 2
shows the solutions to the following two problems

paq ´∆u`
´

π ´
4x21`4x22´3

8x21x
2
2`16x42´3x21´17x22`4

¯

¨ u “ π ¨ x1 on Ω pbq ´∆u` u “ x2
1 ` x1x2 ´ 1 on Ω

(2)

(a) (b) (c) (d)

Figure 1: (a) circle, (b) lemniscate of Gerono, (c) horn torus, and (d) Whitney umbrella
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(a) (b)

Figure 2: Solutions corresponding to (2) on the lemniscate of Gerono where the dashed line corre-
sponds with px1, x2q “ p0, 0q showing the first is univalued while the second is multivalued.

where the domain is the lemniscate of Gerono shown in Fig. 1(b) and defined by

Ω “ tpx1, x2q P R2 | x4
1 ´ x

2
1 ` x

2
2 “ 0u.

The solution of the former is u “ x1 which is univalued at the singularity p0, 0q while the solution of
the latter takes two different values at p0, 0q, one along each of the two local irreducible components
at p0, 0q. These problems will be further considered in Exs. 2.7 and 3.9, respectively. Numerical
algebraic geometry will also be used to compute the local irreducible components [9] to ensure the
proper structure of the solution u at the singularities.

The structure of the rest of the paper is as follows. Section 2 shows the existence and uniqueness
of the solution to the elliptic problem (1) under certain conditions along with analysis when a global
parameterization is known. Sections 3 and 4 describe a local tangential parameterization at smooth
points along with considering local irreducible components at singularities.

2 Global parameterization

2.1 Formulation

For k P N Y t8u and a connected set D Ă R, let CkpD,Rnq consist of the functions α : D Ñ Rn
which are k-times continuously differentiable on D. For 0 ď r ď k, let αprqptq denote the rth

derivative of α at t. A real algebraic curve Ω Ă Rn is called a closed parametric Ck curve if there
exists a closed interval ra, bs P R and a surjective map X : ra, bs Ñ Ω such that X P Ckpra, bs,Rnq
with Xprqpaq “ Xprqpbq for all 0 ď r ď k. If X is also a bijection between ra, bq and Ω, then Ω is
simple. A function h : Ω Ñ R is k-times continuously differentiable on Ω if h ˝X P Ckpra, bs,Rq.

Example 2.1 The unit circle Ω “ tx2
1 ` x2

2 “ 1u Ă R2 shown in Fig. 1(a) is a simple closed
parametric C8 curve. The surjective function X : r0, 2πs ÞÑ Ω defined by Xpθq “ pcospθq, sinpθqq
is infinitely differentiable and bijects r0, 2πq onto Ω.

The lemniscate of Gerono Λ “ tx4
1 ´ x2

1 ` x2
2 “ 0u Ă R2 shown in Fig. 1(b) is a closed

parametric C8 curve since the surjection Y : r0, 2πs ÞÑ Λ defined by Y pθq “ pcospθq, sinp2θq{2q is
infinitely differentiable. The map Y is not a bijection since Y pπ{2q “ Y p3π{2q “ p0, 0q which is the
self-intersection point. Hence, Λ is not a simple curve.

A real algebraic surface Ω Ă Rn is called a closed parametric Ck surface if, for every x˚ P Ω,
there exists a nonempty open connected set V Ă R2, an open set U Ă Rn containing x˚, and a
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X
ÝÑ

V x˚ P U X Ω

Figure 3: Illustrating a closed parametric map at x˚ “ p0, 0,´1q on the sphere from Ex. 2.2

bijective map X : V Ñ U XΩ such that X P CkpV,Rnq and the rank of the Jacobian matrix of X,
denoted JX, at every point in V is 2. A function h : Ω Ñ R is k-times continuously differentiable
on Ω if h ˝X P CkpV,Rq.

Example 2.2 The unit sphere Ω “ tx2
1 ` x2

2 ` x2
3 “ 1u Ă R3 is a closed parameteric C8 surface.

Due to rotational symmetry of the sphere, we only need to consider one point, say x˚ “ p0, 0,´1q.
As shown in Fig. 3, one can take V “ ta2

1 ` a2
2 ă 1{4u Ă R2, U “ tx2

1 ` x2
2 ă 1{4u Ă R3 which

clearly contains x˚, and bijective map X : V Ñ U X Ω defined by

Xpa1, a2q “

ˆ

a1, a2,´
b

1´ a2
1 ´ a

2
2

˙

which is infinitely differentiable with full rank Jacobian matrix on V .
The Whitney umbrella Λ “ tx2

1 “ x2
2x3u Ă R3 shown in Fig. 1(c) is not a closed parametric Ck

surface for any k P N Y t8u since, for example, the surface Λ near the point p0, 0,´1q is one-
dimensional (called the “handle” of the Whitney umbrella).

We now turn to consider (1) on Ω Ă Rn. Suppose that G is a given metric tensor defined on
the smooth points of Ω with inverse G´1. Then, in local coordinates pt1, . . . , tdq where d “ dim Ω,

∆u “
1

a

|g|

d
ÿ

i“1

B

Bti

˜

a

|g| ¨
d
ÿ

j“1

gij
Bu

Btj

¸

(3)

where g “ detG and gij is the pi, jq entry of G´1.

Example 2.3 For Ω “ Rn with the standard metric tensor G “ In, the n ˆ n identity matrix,
the local coordinates are simply the standard coordinates px1, . . . , xnq, g “ detG “ 1, and gij “ δij
(Kronecker delta). Hence,

∆u “
n
ÿ

i“1

B2u

Bx2
i

which is simply the Laplacian of u on Rn.

Example 2.4 Reconsider the unit circle Ω “ tx2
1 ` x

2
2 “ 1u Ă R2 with parameterization

Xpθq “ px1pθq, x2pθqq “ pcospθq, sinpθqq for θ P r0, 2πs
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from Ex. 2.1. Since
g “ }X 1pθqq}2 “ sin2pθq ` cos2pθq “ 1,

we know that G “ G´1 “ r1s. Hence,

∆u “
d2u

dθ2
.

For example, if upxq “ x1 ` x2, then upθq “ cospθq ` sinpθq with

∆u “
d2

dθ2
pcospθq ` sinpθqq “ ´pcospθq ` sinpθqq “ ´u.

If, instead, we utilize the rational parameterization

Xptq “ px1ptq, x2ptqq “

ˆ

1´ t2

1` t2
,

2t

1` t2

˙

for t P R,

then

g “ }X 1ptq}2 “

ˆ

´4t

p1` t2q2

˙2

`

ˆ

2p1´ t2q

p1` t2q2

˙2

“
4

p1` t2q2

with G “ rgs and G´1 “ rg´1s. Hence,

∆u “
1` t2

2

d

dt

ˆ

1` t2

2

du

dt

˙

“
1` t2

4

ˆ

p1` t2q
d2u

dt2
` 2t

du

dt

˙

“
p1` t2q2

4

d2u

dt2
`
tp1` t2q

2

du

dt
.

Similar as above, if upxq “ x1 ` x2, then uptq “ p1` 2t´ t2q{p1` t2q and one can verify that

∆u “ ´
1` 2t´ t2

1` t2
“ ´u.

Example 2.5 For the unit sphere Ω “ tx2
1 ` x

2
2 ` x

2
3 “ 1u Ă R3, consider the parameterization

Xpθ1, θ2q “ psinpθ1q cospθ2q, sinpθ1q sinpθ2q, cospθ1qq for θ1 P r0, πs and θ2 P r0, 2πs.

The metric tensor is

G “

„

Bx

Bθi
¨
Bx

Bθj



i,j

“

„

1 0
0 sin2pθ1q



with G´1 “

„

1 0
0 csc2pθ1q



yielding g “ detG “ sin2pθ1q. Note that since θ1 P r0, πs,
a

|g| “ sinpθ1q ě 0. Therefore,

∆u “
1

sinpθ1q

ˆ

B

Bθ1

ˆ

sinpθ1q
Bu

Bθ1

˙

`
B

Bθ2

ˆ

sinpθ1q csc2pθ1q
Bu

Bθ2

˙˙

“
B2u

Bθ2
1

` csc2pθ1q
B2u

Bθ2
2

` cotpθ1q
Bu

Bθ1
.

For example, if upxq “ x1 ` x2 ` x3, then upθq “ sinpθ1qpsinpθ2q ` cospθ2qq ` cospθ1q with

∆u “ ´u´
sinpθ2q ` cospθ2q

sinpθ1q
`

ˆ

cos2pθ1q
sinpθ2q ` cospθ2q

sin θ1
´ cospθ1q

˙

“ ´2u.
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2.2 Well-posedness for curves

Let H1pΩq denote the Sobolev space with k “ p “ 1 and vanishing boundary set Ω, and H´1pΩq
denote the dual space to H1pΩq. When Ω is understood, we simply write H1 and H´1, respectively.

The following provides our main theoretical result about well-posedness of (1) for curves.

Theorem 2.6 If Ω is a closed parametric C1 curve and f, c P H´1 with c ě 0 and
ş

Ω c ą 0, then
there exists a unique weak solution u P H1 to (1).

Proof. We first define a weak solution to (1) by multiplying v P H1 to both sides of (1) and
applying Green’s first identity. Hence, for the standard inner product x¨, ¨y, we have

ż

Ω
p´∆u` cuqvdx “

ż

Ω
x∇u,∇vydx`

ż

Ω
cuvdx “

ż

Ω
fvdx. (4)

In particular, a function u P H1 is called a weak solution to (1) if (4) is satisfied for all v P H1.
Consider writing (4) in the following bilinear form:

apu, vq “ lpvq (5)

where

apu, vq :“

ż

Ω
x∇u,∇vydx`

ż

Ω
cuvdx and lpvq :“

ż

Ω
fvdx. (6)

Then, we can prove (1) has a unique weak solution in H1 using Lax-Milgram Theorem.
Define

xα, βyL2 :“

ż

Ω
xα, βydx and xu, vyΩ :“ x∇u,∇vyL2 ` x

?
c ¨ u,

?
c ¨ vyL2 .

The assumptions on c imply that x¨, ¨yΩ is an inner product. In fact, when c ” 1, x¨, ¨yΩ is the
default inner product on H1. Let } ¨ }Ω on H1 be the norm induced by x¨, ¨yΩ. Next, we show the
coercivity of the bilinear function ap¨, ¨q. To that end, for any v P H1,

apv, vq “ }∇v}2L2 ` }
?
cv}2L2 “ }v}

2
Ω.

Given u, v P H1, we square both sides of (6) and apply the Cauchy-Schwarz inequality to obtain

apu, vq2 “ x∇u,∇vy2L2 `

ˆ
ż

Ω
cuvdx

˙2

` 2x∇u,∇vyL2

ż

Ω
cuvdx

ď }∇u}2L2}∇v}2L2 ` }
?
c ¨ u}2L2}

?
c ¨ v}2L2 ` 2}∇u}L2}∇v}L2}

?
c ¨ u}L2}

?
c ¨ v}L2

ď p}∇u}2L2 ` }
?
c ¨ u}2L2qp}∇v}2L2 ` }

?
c ¨ v}2L2q

ď }u}2Ω}v}
2
Ω

which shows the boundedness of ap¨, ¨q. Since f P H´1, it follows immediately from the Lax-Milgram
Theorem that there exists a unique u P H1 satisfying (5). l

Theorem 2.6 extends well-posedness of (1) to some curves which have singularities such as
the lemniscate of Gerono shown in Fig. 1(b) for appropriate choices of f and c. In particular,
Theorem 2.6 assumes minimum regularity requirement on f and c. In the following examples in
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Sections 2.2 and 3, f and c have much nicer properties so that a classical solution exists, which must
be the unique solution by Theorem 2.6. By combining these properties together with Theorem 2.6
and applying the Solobev embedding theorem, the solutions to (1) satisfy more regularity conditions
leading to the results in Theorem 2.8 below.

Example 2.7 Let Λ be the lemniscate of Gerono as in Ex. 2.1. Consider the linear elliptic PDE

´∆u` cpxq ¨ u “ π ¨ x1 on Λ where cpxq “ π ´
4x2

1 ` 4x2
2 ´ 3

8x2
1x

2
2 ` 16x4

2 ´ 3x2
1 ´ 17x2

2 ` 4
. (7)

One can observe that c ě 0 and
ş

Λ c ą 0 by considering Fig. 4 which plots cpXpθqq for θ P r0, 2πs
where Xpθq “ pcospθq, sinp2θq{2q is the global parameterization of Λ as in Ex. 2.1. Hence, Thm. 2.6
shows that there exists a unique solution to (7). In fact, using (3), it is easy to verify that upxq “ x1

solves (7). This problem will be reconsidered numerically in Ex. 3.9.

Figure 4: Plot of cpXpθqq with respect to θ P r0, 2πs from Ex. 2.7.

Building on the existence and uniqueness result provided by Theorem 2.6, the following develops
approaches for numerically computing the solution to (1) when a globabl parameterization is known.

2.3 Solving with a global parameterization

When the real algebraic curve Ω Ă Rn is a closed parametric C1 curve with a given parameterization
X : ra, bs ÞÑ Ω such that X 1ptq ‰ 0 for all t P ra, bs, solving (1) reduces to solving an ordindary
differential equation on ra, bs with periodic boundary as follows. By definition, gptq “ }X 1ptq}2 ą 0,
Gptq “ rgptqs, and G´1ptq “ rg´1ptqs for t P ra, bs. With (3), the linear elliptic PDE (1) simplifies to

´
1

g

d2u

dt2
`

1

2g2

dg

dt

du

dt
` c ¨ u “ f on ra, bs (8)

with periodic boundary where, by abuse of notation, c and f are the corresponding restrictions.
Therefore, one can, for example, simply use a finite difference approach with a three-point stencil
to discretize (8) as follows. Given N , consider ∆t “ pb´ aq{N with ti “ a` i ¨∆t for i “ 0, . . . , N .
Since u is periodic on ra, bs with t0 “ a and tN “ b, we aim to compute ui for i “ 0, . . . , N ´ 1 such
that ui « uptiq which amounts to computing UN “ pu0, . . . , uN´1q

T that solves the linear system

AN ¨ UN “ FN (9)
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where FN “ pfpt0q, . . . , fptN´1qq
T and

AN “

¨

˚

˚

˚

˚

˚

˚

˚

˝

C0 R0 0 ¨ ¨ ¨ 0 L0

L1 C1 R1 0 ¨ ¨ ¨ 0
0 L2 C1 R2 ¨ ¨ ¨ 0
...

. . .
. . .

. . .
...

0 ¨ ¨ ¨ 0 LN´2 CN´2 RN´2

RN´1 0 ¨ ¨ ¨ 0 LN´1 CN´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

(10)

such that

Li “ ´
1

gptiq∆t2

ˆ

1`
g1ptiq∆t

4gptiq

˙

, Ci “ cptiq `
2

gptiq∆t2
, and Ri “ ´

1

gptiq∆t2

ˆ

1´
g1ptiq∆t

4gptiq

˙

.

By imposing a stronger condition on the regularity of the solution u to (1), namely u P C4pΩq Ă H1,
we obtain the following.

Theorem 2.8 If u P C4pΩq and there exists δ ą 0 such that c ą δ, then the numerical scheme (9)
is convergent, stable, and has second order accuracy.

Proof. Using Taylor series expansion, we have

upxpti`1qq “ upxptiqq `∆tu1pxptiqq `
∆t2

2 u2pxptiqq `
∆t3

3! u
3pxptiqq `

∆t4

4! u
4pxpηiqq,

upxpti´1qq “ upxptiqq ´∆tu1pxptiqq `
∆t2

2 u2pxptiqq ´
∆t3

3! u
3pxptiqq `

∆t4

4! u
4pxpξiqq,

(11)

where ηi P rti, ti`1s and ξi P rti´1, tis. Therefore,

upxpti`1qq ´ 2upxptiqq ` upxpti´1qq

∆t2
“ u2pxptiqq ´

∆t2

4!
pu4pxpηiqq ` u

4pxpξiqqq.

This expression combined with (9) yields

AN

¨

˚

˝

upxpt0qq
...

upxptN´1qq

˛

‹

‚

`
∆t2

4!

¨

˚

˝

u4pxpη0qq`u
4pxpξ0qq

...
u4pxpηN´1qq`u

4pxpξN´1qq

˛

‹

‚

“ FN . (12)

Denoting

uN “

¨

˚

˝

upxpt0qq
...

upxptN´1qq

˛

‹

‚

and u4N “

¨

˚

˝

u4pxpη0qq`u
4pxpξ0qq

...
u4pxpηN´1qq`u

4pxpξN´1qq

˛

‹

‚

,

subtracting (9) from (12) yields

AN puN ´ UN q “ ´
∆t2

4!
u4N .

Thus, the error satisfies

}uN ´ UN}8 “
∆t2

4!
}A´1

N u4N}8 ď
∆t2

4!
}A´1

N }8}u
4
N}8. (13)
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For sufficiently small ∆t, one can assume that Ci ą δ ` 2
gptiq∆t2

ą 0 while both |Li| and |Ri| are

bounded above by, say, δ
4 `

1
gptiq∆t2

. Thus, we have

Ci ´ p|Li| ` |Ri|q ą
δ

2
ą 0.

Hence, AN is a strictly diagonally dominant matrix so that AN is invertible where the real parts
of the eigenvalues are positive so the stability of the scheme follows immediately. Moreover, the
Ahlberg-Nilson-Varah bound [17,18] yields }A´1

N }8 ď
2
δ ă 8 showing that

}uN ´ UN}8 ď
2 ¨∆t2

δ ¨ 4!
}u4N}8.

Since u P C4pΩq, the global error defined above for scheme (9) is bounded and converges to 0 as
the mesh size goes to zero. In particular, the scheme is convergent with second order accuracy. l

Of course, one can repeat this construction using a larger stencil and imposing a stronger
condition on the regularity of the solution to obtain higher order accuracy. The following illustrates
the convergence rate for the three-point stencil using a five-point stencil with many points to
estimate the error.

Example 2.9 Consider solving

´∆u` u “ x on x2 ` 50y2 “ 1. (14)

Using the global parameterization

Xpθq “

ˆ

sin θ,
cos θ
?

50

˙

, θ P r0, 2πs, (15)

one aims to solve

´
50

50´ 49 sin2 θ
uθθ ´

2450 sin θ cos θ

p50´ 49 sin2 θq2
uθ ` u “ sin θ on r0, 2πs

such that u is periodic on r0, 2πs. Table 1 lists the error and convergence order which computa-
tionally verifies second order convergence as expected by Thm. 2.8. Here, the error is computed by
comparing against the solution obtained using a five-point stencil with N “ 20,480.

N L8 Error Order

160 2.043¨10´4 —
320 5.099¨10´5 2.002
640 1.274¨10´5 2.000
1280 3.185¨10´6 2.000

Table 1: Comparison of error for solving (14) using the global parameterization (15).
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3 Local parameterization for curves

When there is no readily available global parameterization, one can solve (1) via a finite difference
method based on local parameterization at each sample point. The following proceeds by first
considering a numerical cell decomposition using numerical algebraic geometry, then analyzing a
local tangential parameterization at smooth points, and finally considering singular points.

3.1 Curve decomposition using numerical algebraic geometry

One approach for decomposing a curve is to utilize a numerical cellular decomposition [8,19] com-
puted using numerical algebraic geometry [3, 23]. A cellular decomposition of a curve is a disjoint
union of finitely many vertices V , which are simply points on the curve, and edges E, which are
portions of the curve diffeomorphic to an interval in R. The endpoints of each edge are vertices.
In particular, V must contain the set of singular points of the curve.

Example 3.1 Reconsider the lemniscate of Gerono Λ Ă R2 defined in Ex. 2.1 and shown in
Fig. 2(b). Figure 5 illustrates a cellular decomposition of Λ consisting of 3 vertices and 4 edges.

Figure 5: Cellular decomposition for lemniscate of Gerono with vertices vi and edges ej

A numerical cellular decomposition simply represents each edge of a cellular decomposition by
an interior point along with a homotopy that permits the tracking along the edge starting from the
interior point. From this numerical representation, one can perform computations on each edge.
For example, one can sample points along each edge and construct a Chebyshev interpolant as
described in [1]. From the Chebyshev interpolant, one can easily approximate the arc length of
each edge and approximate mesh points in the desired structure, for example, uniform in arc length.

At each point on the curve, there is a local irreducible decomposition of the curve at the point
which can be computed using numerical algebraic geometry [9]. A curve is locally irreducible at
every smooth point on the curve and is locally diffeomorphic to the tangent line. This is utilized
next to construct a tangential parameterization at smooth points. The only points on a curve where
the curve could be locally reducible is at a singular point. Hence, at each singular point on the
curve, the approach in [9] uses the local monodromy group structure computed using a homotopy
to determine the locally irreducible components of the curve at a singular point. Moreover, each
locally irreducible component has a well-defined local degree [9]. If a component has local degree
equal to 1, then it is locally diffeomorphic to a tangent line.
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Example 3.2 Continuing from Ex. 3.1, all points are smooth points of Λ except v2 “ p0, 0q.
At v2, Λ decomposes into two locally irreducible components each of local degree 1 corresponding to
each of the two local tangent directions at v2.

Local irreducible decomposition is important for solving (1) since Theorem 2.6 enforces that
the solution is continuous along each locally irreducible component. Hence, a numerical solving
scheme needs to allow for a singular point to take a different value along each locally irreducible
component passing through the singular point as illustrated in Figure 2(b).

3.2 Tangential parameterization at smooth points

The following uses an approach based on a local tangential parameterization for a smooth curve to
compute x1psq and obtain g which greatly simplifies the calculation of coefficients for the numerical
scheme. Let πN “ tp0, p1, . . . , pN´1u consist of N mesh points uniformly distributed in arc length
using a cyclic ordering with pi “ pN`i as needed. Define rpi´1, pi`1s to be the segment of the curve
passing through points pi´1, pi, and pi`1. Let vi be a unit tangent vector to the curve at pi and
consider `iptq “ pi` tvi which parameterizes the tangent line to the curve at pi. Consider the map
αi : rpi´1, pi`1s Ñ R defined by αippq “ pp´piq ¨vi. By replacing vi by ´vi as needed and taking N
large enough, αi is a diffeomorphism from rpi´1, pi`1s to rαippi´1q, αippi`1qs where

αippi´1q ă 0 “ αippiq ă αippi`1q.

See Fig. 6 for an illustration of this tangential parameterization construction.

Figure 6: Illustration of tangential parameterization.

Let Xi : rαippi´1q, αippi`1qs Ñ rpi´1, pi`1s be the inverse of αi. Locally, (8) using Xiptq is
simplified at t “ 0 based on the following.

Theorem 3.3 With the setup described above, X 1ip0q “ vi. Moreover, for corresponding metric

tensor Gptq, (3) becomes ∆up0q “ B2up0q
Bt2

.

Proof. For t P rαippi´1q, αippi`1qs, one knows that Xiptq satisfies

„

pXiptq ´ piq ¨ vi ´ t
F pXiptqq



“ 0.

11



By the implicit function theorem,

X 1iptq “ ´

„

vTi
JF pXiptqq

´1 „
´1
0



. (16)

Since vi ¨ vi “ 1 and JF pXip0qqvi “ 0, it immediately follows from (16) that X 1ip0q “ vi. With
gptq “ Gptq “ }X 1iptq}

2, gip0q “ 1. Additionally, from the first row of (16), we know vi ¨X
1
iptq “ 1

so that vi ¨ X
2
i ptq “ 0. Hence, at t “ 0, X 1ip0q ¨ X

2
i p0q “ vi ¨ X

2
i p0q “ 0 which immediately yields

that dgip0q
dt “ 0 and the result follows. l

Example 3.4 To illustrate, consider the ellipse x2 ` 10y2 “ 1 at

p “

„

1
0



with v “

„

0
1



so that Xptq “

„
?

1´ 10t2

t



.

Clearly, Xp0q “ p. Since

X 1ptq “

„

´10t{
?

1´ 10t2

1



,

it is clear that X 1p0q “ v. Moreover, for t near 0, (3) becomes

∆uptq “

c

1´ 10t2

1` 90t2
¨
d

dt

˜

c

1´ 10t2

1` 90t2
duptq

dt

¸

“
1´ 10t2

1` 90t2
d2uptq

dt
´

100t

p1` 90t2q2
duptq

dt

which yields ∆up0q “ d2up0q
dt2

in accordance with Thm. 3.3.

Combining with (8), one can develop a local discretization to approximate uppiq for each i which
is simplified due to Theorem 3.3. For example, with ui « uppiq, a three-point stencil yields the
following discretization:

Li ¨ ui´1 ` Ci ¨ ui `Ri ¨ ui`1 “ fppiq (17)

where

Li “
´2

αippi´1qpαippi´1q ´ αippi`1qq
, Ci “ cppiq `

´2

αippi`1qαippi´1q
, Ri “

´2

αippi`1qpαippi`1q ´ αippi´1qq
.

Writing UN “ pu0, . . . , uN´1q
T , and FN “ pfpp0q, . . . , fppN´1qq

T , (17) yields the linear system

BN ¨ UN “ FN

where BN is the same as AN in (10) with the localized versions of Li, Ci, and Ri above. In
particular, note that this does not require computing gi.

Theorem 3.5 If u P C3pΩq and there exists δ ą 0 such that c ą δ, the finite difference scheme
arising from (17) is convergent and at least first order accurate in arc length mesh size.

Proof. The proof is similar to that of Theorem 2.8 except that (17) uses an unstructured three-
point stencil to approximate ∆uppiq, which becomes the second-order central difference scheme
when αippi`1q “ ´αippiq. l
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Remark 3.6 By imposing a stronger condition on the regularity of the solution u as well as increas-
ing the size of the domain αi for which each remains a diffeomorphism, one can naturually replace
the three-point stencil used in (17) with larger stencils and obtain similar results to Theorem 3.5
with higher-order convergence.

Example 3.7 For a ą 0, consider solving

´∆u` u “ x on x2 ` ay2 “ 1. (18)

Using the global parameterization

ˆ

cos t,
sin t
?
a

˙

of the ellipse, we first compare the global method in

Section 2.3 with the local tangential parameterization. Table 2 compares using a three-point stencil
for both when a “ 50 where the errors are computed by comparing against an approximate solution
computed using a five-point stencil with the global parameterization using 20,480 points.

Global
parameterization

Local tangential
parameteization

N L8 Error Order L8 Error Order

160 2.043¨10´4 — 2.459¨10´3 —
320 5.099¨10´5 2.002 6.401¨10´4 1.942
640 1.274¨10´5 2.000 1.630¨10´4 1.975
1280 3.185¨10´6 2.000 4.094¨10´5 1.992

Table 2: Comparison of global and local parameterization methods for solving (18) when a “ 50.

We next compare using a three-point stencil and a five-point stencil with the local tangential
parameterization for a “ 1, a “ 10, and a “ 50. The results are summarized in Table 3 with
the error computed as above. This shows that the error decreases when curvature is more uniform
throughout the curve so that the unstructured stencil approaches a uniformly-spaced stencil. Figure 7
shows the numerical solutions of (18) for these three instances using N “ 160 points.

(a) (b) (c)

Figure 7: Solution (red) for ´∆u ` u “ x on x2 ` ay2 “ 1 (blue) with N “ 160 mesh points for
(a) a “ 1, (b) a “ 10, and (c) a “ 50.

Remark 3.8 Using Theorem 3.3, this local tangential approximation does not encounter the cost
of approximating metric tensor coefficients. Moreover, by using numerical algebraic geometry to
perform computations on the curve Ω Ă Rn, we note that we are solving in the space of H1pΩq
instead of the higher-dimensional space H1pRnq. This becomes especially useful for large n.
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3-Point Stencil 5-Point Stencil

N L8 Error Order L8 Error Order

a “ 1

160 9.639¨10´5 — 2.979¨10´7 —
320 2.410¨10´5 2.000 1.859¨10´8 4.002
640 6.024¨10´6 2.000 1.162¨10´9 4.000
1280 1.506¨10´6 2.000 7.322¨10´11 3.988

a “ 10

160 5.744¨10´4 — 5.191¨10´5 —
320 1.442¨10´4 1.995 3.265¨10´6 3.991
640 3.607¨10´5 1.999 2.046¨10´7 3.997
1280 9.020¨10´6 2.000 1.281¨10´8 3.998

a “ 50

160 2.459¨10´3 — 7.394¨10´3 —
320 6.401¨10´4 1.942 3.119¨10´4 4.567
640 1.630¨10´4 1.975 1.968¨10´5 3.986
1280 4.094¨10´5 1.992 1.245¨10´6 3.983

Table 3: Comparison of using the local tangential parameterization method for different stencil
sizes and varying values of a when solving (18).

3.3 Local parameterization near singularities

For a smooth curve, every point has a well-defined tangent direction and the curve has a local
tangential parameterization as illustrated in Figure 6. For a singular point, one needs to look at
each local irreducible component and allow the value of u at the singular point to take a different
value along each such component as described in Section 3.1. If a local irreducible component has
local degree 1, it is locally diffeomorphic to a well-defined tangent line so that the singular point is
a smooth point with respect to the local irreducible component. Hence, one can simply apply the
local tangential parameterization from Section 3.2 along the local irreducible component.

Example 3.9 Consider the following problem

´∆u` u “ fpx, yq on x4 ´ x2 ` y2 “ 0 (19)

where fpx, yq “ x2 ` xy ´ 1 whose solution was shown in Fig. 2(b). The origin is the only sin-
gular point on the lemniscate of Gerono which arises as the intersection of two locally irreducible
components of local degree 1 so that one can employ a local tangential parameterization along each
locally irreducible component. Table 4 summarizes the results when using a local tangential param-
eterization with a three-point stencil where the errors are computed using a three-point stencil with
the global parameterization from Ex. 2.1 with N “ 20,480 points. Figure 8 shows two views of the
solution computed using N “ 160 points.

When the local degree of a local irreducible component is more than 1, one can, for example,
use a truncated Puiseux series expansion where the coefficients can be computed using numerical
algebraic geometry. Moreover, by reparameterizing (e.g., see [23, § 10.2.2]), the Puiseux series
expansion is transformed into a power series expansion and thus one can use a truncated power series
expansion. Such a truncated expansion yields an approximation of a local parameterization of the
local irreducible component near the singularity. Then, one can use a discretization of (8) with this

14



N L8 Error Order

160 3.815¨10´4 —
320 9.391¨10´5 2.022
640 2.330¨10´5 2.011
1280 6.116¨10´6 1.930

Table 4: Error analysis when using the local parameterization with a three-point stencil when
solving (7).

(a) (b)

Figure 8: Solution (red) for ´∆u`u “ x2`xy´ 1 on x4´x2` y2 “ 0 (blue) with N “ 160 points
using a three-point stencil, where (a) and (b) are different views of the same solution.

approximate local parameterization near the singularity and use a local tangential parameterization
away from the singularity.

Example 3.10 Consider the following problem

´∆u` u “ fpx, yq on px2 ` y2q2 ` 4xpx2 ` y2q ´ 4y2 “ 0, (20)

where fpx, yq “ p3607x2 ´ 224xy2 ` 7662x ´ 53y2 ´ 973q{p196x2 ` 616x ` 196y2 ` 1112q. The
curve is called a cardioid (shown in blue in Figs. 9 and 10) which has a locally irreducible cusp
at the origin of local degree 2. The choice of f was selected so that (20) has an exact solution of
upx, yq “ x` x2 which is used for error analysis provided in Table 5. In particular, to demonstrate
higher-order methods, we used an eighth-order method with a local tangential approximation away
from the singularity. Near the singularity, we approximated xpyq so that F pxpyq, yq “ 0. Since xpyq
is a Puiseux series where the denominator is 3, reparameterizing y “ s3 yields that xpsq is power
series in s with the first few terms being

xpsq “ s2 ´
5

12
s4 ´

1

16
s6 ´

91

5184
s8 ` ¨ ¨ ¨ .

To ensure more than enough accuracy, we used a degree 58 expansion which is pictorially shown in
Fig. 9 coupled with a tenth-order discretization at the singularity. Figure 10 shows the numerical
solution of (20) computed using N “ 60 points. Since this computation was performed using
double precision, the value of N needs to be large enough to show convergence of the method but
small enough to avoid numerical ill-conditioning.
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Figure 9: Cardioid (blue) along with approximation (red) near the singularity at the origin.

N L8 Error Order

60 2.826¨10´5 —
80 2.348¨10´6 8.648
100 3.656¨10´7 8.334
120 8.196¨10´8 8.202
140 2.339¨10´8 8.134

Table 5: Error analysis for solving (20).

Figure 10: Solution (red) for (20) of a cardioid (blue) using N “ 60 points.

4 Local parameterization for surfaces

For smooth surfaces with a known global parameterization, there exists well-studied methods to
solve (1) as highlighted in the Introduction. As in Section 3 when considering curves, we focus on
the case when there is no readily available global parameterization.
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4.1 Surface decomposition using numerical algebraic geometry

The extension of Section 3.1 to a surface is a cellular decomposition consisting of finitely many
faces F , which are portions of the surface diffeomorphic to a rectangle in R2, along with edges E
and vertices V . In particular, the boundary of each face consists of finitely many edges, each of
which has a vertex at each end.

Example 4.1 A cellular decomposition of a sphere consisting of 2 vertices, 2 edges, and 2 faces is
illustrated in Figure 11.

Figure 11: Surface decomposition for a sphere with vertices vi, edges ej , and faces fk.

A numerical cellular decomposition, as first described in [7], represents each face by an interior
point along with a homotopy that permits the tracking along the face starting from the interior
point. The same holds for edges as summarized in Section 3.1.

4.2 Tangential parameterization at smooth points

By simply adapting the approach in Section 3.2 from a local parameterization based on the tangent
line for a curve to a local parameterization based on the tangent plane for a surface, the following
obtains an analog of Theorem 3.3 for the surface case.

Suppose that p is a smooth point on the surface Ω Ă Rn such that w1, w2 P Rn span the tangent
space with wi ¨wj “ δij . Hence, the tangent space is parameterized by `ptq “ p` t1w1 ` t2w2. Let
α : Ω Ñ R2 where αpqq “ ppq ´ pq ¨ w1, pq ´ pq ¨ w2q. On Ω locally nearly p, α has an inverse, say,
Xptq “ Xpt1, t2q where Xp0q “ p.

Theorem 4.2 With the setup described above, BXp0q
Bti

“ wi. Moreover, for corresponding metric
tensor Gptq, (3) becomes

∆up0q “
B2up0q

Bt21
`
B2up0q

Bt22
.
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Proof. The corresponding system that Xptq satisfies is

»

–

pXptq ´ pq ¨ w1 ´ t1
pXptq ´ pq ¨ w2 ´ t2

F pXptqq

fi

fl “ 0.

By the implicit function theorem,

”

BXptq
Bt1

BXptq
Bt2

ı

“ ´

»

–

wT1
wT2

JF pXptqq

fi

fl

´1 »

–

´1 0
0 ´1
0 0

fi

fl .

Since JF pXp0qqwi “ 0 and wi ¨ wj “ δij , one has BXp0q
Bti

“ wi and wi ¨
BXptq
Btj

“ δij . Hence,

wi ¨
B2Xptq

BtjBtk
“ 0. (21)

By definition, the metric tensor and its inverse are

Gptq “

»

–

BXptq
Bt1

¨
BXptq
Bt1

BXptq
Bt1

¨
BXptq
Bt2

BXptq
Bt2

¨
BXptq
Bt1

BXptq
Bt2

¨
BXptq
Bt2

fi

fl and G´1ptq “
1

gptq

»

–

BXptq
Bt2

¨
BXptq
Bt2

´
BXptq
Bt2

¨
BXptq
Bt1

´
BXptq
Bt1

¨
BXptq
Bt2

BXptq
Bt1

¨
BXptq
Bt1

fi

fl

where gptq “ detGptq. Hence, Gp0q “ G´1p0q “ I2 and gp0q “ 1. Moreover, if follows from (21)

that Bgp0q
Bti

“ 0 and Bgijp0q
Bti

“ 0 where gijptq is the pi, jq-entry of G´1ptq so the result follows. l

Remark 4.3 With appropriate changes to the setup and following a similar proof, Thm. 4.2 ex-
tends to smooth points on d-folds in Rn. We do not consider d ą 2 here since it remains an open
problem to compute a numerical cell decomposition using numerical algebraic geometry for d ą 2.

Example 4.4 To illustrate, consider the ellipsoid x2 ` 10py2 ` z2q “ 1 at

p “

»

–

1
0
0

fi

fl with w1 “

»

–

0
1
0

fi

fl and w2 “

»

–

0
0
1

fi

fl so that Xpt1, t2q “

»

–

a

1´ 10pt21 ` t
2
2q

t1
t2

fi

fl .

Clearly, Xp0, 0q “ p. Since BX1pt1,t2q
Bti

“
´10ti

X1pt1,t2q
, it is clear that BXp0,0q

Bti
“ wi. Moreover, for pt1, t2q

near the origin, (3) becomes

∆upt1, t2q “

c

1´10pt21`t
2
2q

1`90pt21`t
2
2q
¨

„

B
Bt1

ˆ
c

1`90pt21`t
2
2q

1´10pt21`t
2
2q

´

1´10t21`90t22
1`90pt21`t

2
2q

Bu
Bt1
´ 100t1t2

1`90pt21`t
2
2q

Bu
Bt2

¯

˙

`

B
Bt2

ˆ
c

1`90pt21`t
2
2q

1´10pt21`t
2
2q

´

1`90t21´10t22
1`90pt21`t

2
2q

Bu
Bt2
´ 100t1t2

1`90pt21`t
2
2q

Bu
Bt1

¯

˙

which yields ∆up0, 0q “ B2up0,0q
Bt21

`
B2up0,0q
Bt22

in accordance with Thm. 4.2.

From an unstructured mesh of points on the surface, one can easily construct a local discretiza-
tion of ∆u at each grid point with respect to the local tangential parameterization yielding a linear
system to solve as in the curve case.
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Example 4.5 Consider the following problem

´∆u` u “ fpx, y, z; aq on x2 ` apy2 ` z2q “ 1 (22)

where a P Rą0 and fpx, y, z; aq “ 1
3pa`x2p1´aqq2

“

axp2a` 1q ` x3p1´ aqp3a` x2p1´ aqq
‰

. The sur-

face is an ellipsoid (shown in Fig. 12) and the choice of f was selected so that (22) has an exact
solution of upx, y, zq “ x{3 which is used for error analysis. In particular, using a roughly uniform
grid of size N2 on the ellipsoid with the local tangential parameterization, the results are summa-
rized in Table 6 using a nine-point stencil for various choice of a. Figure 12 shows the solution of
(22) computed when N “ 40.

N L8 Error Order

a = 1

20 3.462¨10´2 —
40 8.655¨10´4 2.000
80 2.164¨10´4 2.000
160 5.410¨10´5 2.000

a = 10

20 2.337¨10´2 —
40 5.756¨10´3 2.022
80 1.435¨10´3 2.004
160 4.056¨10´4 1.823

a = 50

20 3.219¨10´2 —
40 1.326¨10´2 1.279
80 3.606¨10´3 1.879
160 9.129¨10´4 1.982

Table 6: Comparison of using the local tangential parameterization on a nine-point stencil with
varying values of a when solving (18).

(a) (b) (c)

Figure 12: Solution of (22) with N “ 40 for (a) a = 1, (b) a = 10, and (c) a = 50.

4.3 Local parameterization near singularities

For almost smooth surfaces, there are only finitely many singular points and thus each are isolated.
As with the curve case, one first computes a local irreducible component at each singular point since
the value of u at a singular point could be different along different local irreducible components.
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If a local irreducible component has local degree 1, it is locally diffeomorphic to a well-defined
tangent plane for which a local tangential parameterization from Section 4.2 can be used. For
local irreducible components of higher local degree, one can use a local parameterization (or an
approximation of one) to discretize near the singularity for each each local irreducible component.

Example 4.6 Consider the following problem

´∆u` u “ x on px2 ` y2 ` z2q2 ´ 4px2 ` y2q “ 0 (23)

where the surface is a called a horn torus (shown in Fig. 13). The horn torus is almost smooth with
a singularity at the origin. Using an approximately uniform grid of N2 points, the local tangential
parameterization was used away from the origin. The surface is locally irreducible at the origin and
the following local parameterization was utilized:

xpt1, t2q “ t21 cospt2q, ypt1, t2q “ t21 sinpt2q, zpt1, t2q “ t1

b

2´ t21.

A nine-point stencil was used at all points with the results summarized in Table 7 where the error
is computed by comparing with the solution computed when N “ 160. Figure 13 shows the solution
of (23) when N “ 40.

N L8 Error

20 2.235¨10´2

40 1.464¨10´3

80 3.075¨10´4

160 –

Table 7: Error analysis for solving (23).

Figure 13: Solution for ´∆u` u “ x on px2 ` y2 ` z2q2 ´ 4px2 ` y2q “ 0 when N “ 40.
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