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Abstract

In this paper, two different novel methods to derive the input-output (IO) equa-

tion of arbitrary RSSR linkages are described. Both methods share some com-

mon elements, i.e., they use the standard Denavit-Hartenberg notation to first

describe the linkage as an open kinematic chain, and Study’s kinematic mapping

to describe the displacement of the coordinate frame attached to the end-effector

of the chain with respect to the relatively non-moving base frame. The kinematic

closure equation is obtained in the seven-dimensional projective kinematic map-

ping image space by equating the eight Study soma coordinates to the identity

array. Then two methods are successfully applied to eliminate the intermediate

joint angle parameters leading to the degree four biquadratic implicit algebraic

IO equation: a) the linear implicitisation algorithm, which can be applied after

rearranging the closure equation such that the linkage can be viewed as two

serial RS chains, and b) numerical elimination theory using pseudowitness sets.

Both approaches lead to the same IO equation. A geometric model was created

in GeoGebra which verifies the derived equation.

Keywords: RSSR linkage, Study soma coordinates, algebraic input-output

equation, linear implicitisation algorithm.

∗Corresponding Author
Email address: john.hayes@carleton.ca (M. John D. Hayes)

Preprint submitted to Mechanism and Machine Theory September 2, 2022



1. Introduction

Four-bar linkages have attracted the curiosity of countless people in research

and industry. The high interest in the linkage motions is not least due to the

wide range of applications in which they are used today, see, for example, [1, 2].

Although there exists detailed trigonometric analysis of four-bar linkages’ kine-5

matic behaviour [3, 4], the rise of computational capacities and the rediscovery

of Study’s kinematic mapping [5] pose a valid reason to reinvestigate these types

of linkages from an algebraic standpoint. The whole idea behind Study’s kine-

matic mapping is to describe distinct three-dimensional displacements of a mov-

ing end-effector frame of a kinematic chain of rigid bodies as distinct points in a10

seven-dimensional projective kinematic mapping image space described by eight

homogeneous coordinates. Constraints on the motion of the end-effector frame

imposed by the joints in the kinematic chain map to curves or surfaces in the

image space. The equations of these curves or surfaces are known as constraint

equations [6]. The coordinate transformation of this mapping is expressed via15

dual quaternions instead of traditional matrix formulations. Detailed under-

standing of the mathematical tools that allow one to manipulate the algebraic

constraint equations in Study’s kinematic image space can help to solve more

complex motions of kinematic chains, such as [7, 8].

One major advantage of analysing linkages using algebraic constraint equa-20

tions compared to the classical trigonometric approach lies in its capability to

obtain all possible solutions [9]. Motivated by these considerations, a derivation

algorithm that describes the linkage using Denavit Hartenberg (DH) parameters,

projects the displacement transformation matrix into Study’s kinematic image

space, and manipulates the resulting equations via Gröbner bases to obtain the25

algebraic input-output (IO) equation for planar, spherical, and Bennett linkages

has been presented in [10, 11], respectively. A natural extension of this algo-

rithm, to demonstrate its effectiveness, is to apply it to another well-investigated

spatial linkage, the RSSR, which will be the main contribution of this paper.

In addition, the results obtained using the polynomial elimination method [12]30
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are supported by a numerical method [9] leading to an identical algebraic IO

equation, as well as a verification of the equation using an animated example

linkage that we created in the GeoGebra software.

The RSSR linkage consists of two revolute (R) and two spherical (S) joints

and following the Kutzbach criterion, possesses 2 degrees of freedom (dof). How-35

ever, one dof that does not influence the IO equation corresponds to the rotation

of the coupler link between the two spherical joints about its own longitudinal

axis. This so-called idle dof can have a positive effect on the durability of the

linkage in engineering applications, as it helps to evenly wear the S joints [13].

Generally, the IO equation of the RSSR is a much more involved equation com-40

pared to the planar, and spherical ones, as in addition to the link lengths between

the four joints, the linkage further possesses three additional design parameters

between the revolute joints, i.e., two link offsets and a link twist. Previous

trigonometric derivations of the RSSR IO equation are available, for example,

in [4, 14]. Hartenberg and Denavit’s derivation of the IO equation [14] uses their45

well-known parameters and trigonometric relations, leading to an equation that

resembles a more complex version of the Freudenstein equation [3]. This is not

entirely surprising given that the planar four-bar is a special case of the RSSR

linkage [4, 15].

2. Denavit-Hartenberg (DH) Parametrisation50

The literature contains many variations of the original Denavit-Hartenberg

(DH) coordinate system and parameter assignment convention [16]. For exam-

ple, subtly different coordinate frame attachment rules and parameter defini-

tions have been devised for mechanical system calibration, dynamic analysis,

accounting for misalignment of joint axis directions, etc., see [17, 18, 19, 20]55

for several examples. Therefore, it is important to precisely define the conven-

tion used in this work to avoid confusion and misinterpretation since the corre-

sponding coordinate transformations are all different from those of Denavit and

Hartenberg.
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The first step in the DH parametrisation of an arbitrary kinematic chain is to

identify and number all the joint axes. Next comes the allocation of coordinate

systems to each link in the chain using a set of rules to locate the origin of the

coordinate system and the orientation of the basis vectors. The position and

orientation of consecutive links are defined by a homogeneous transformation

matrix that maps coordinates of points in the coordinate system attached to

link i to those of the same points described in the coordinate system attached

to link i− 1. Symbolically, the coordinate transformation matrix is denoted

i−1
i T.

The forward and inverse kinematics of serial chains are the concatenations of the60

individual transformation matrices in the appropriate order [21]. For example,

the forward kinematics problem of determining the position and orientation of

the nth link in a serial kinematic chain described in a relatively fixed non-moving

base coordinate system 0, given the relevant DH parameters and values for the

n joint variables is conceptually straightforward as matrix multiplication.65
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Figure 1: DH parameters in a general serial 3R kinematic chain.

To visualise the four DH parameters, consider two arbitrary sequential neigh-

bouring links, i − 1 and i. Two such links are illustrated, together with their
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DH parameters, in Fig. 1. The DH parameters [16] are defined in the following

way.

θi, joint angle: the angle from xi−1 to xi measured about zi−1.70

di, link offset: the distance from xi−1 to xi measured along zi−1.

τi, link twist: the angle from zi−1 to zi measured about xi.

ai, link length: the directed distance from zi−1 to zi measured along xi.

The procedure for assigning the location of the origin and the basis vector

directions for the coordinate system for the ith link in which the DH parameters75

are defined is as follows.

1. Identify all joint axes. Consider neighbours i− 1, i, and i+ 1, illustrated

in Fig. 1.

2. Identify the common perpendicular between the two axes i and i + 1, or

their point of intersection. At the point of intersection, or where the com-80

mon perpendicular meets the i+ 1st joint axis, assign the link coordinate

system origin, 0i.

3. For coordinate systems 0 and 1, ensure the coordinate axes are aligned

when θ1 = 0.

4. Assign the zi axis to point along the joint axis i+ 1.85

5. Assign the xi axis to point along the common normal between the joint

axes i and i + 1. If the axes are parallel, any convenient normal can be

selected. If the axes intersect, assign xi to be perpendicular to the plane

containing zi − 1 and zi.

6. Assign the yi axis to complete a right-handed coordinate system.90

Note that the DH parameters are not unique, i.e., it is possible to attach the

coordinate systems in slightly different ways resulting in different sets of DH

parameters. For example, when we first align the zi axis with joint axis i + 1,

there are two choices for this basis vector direction. Regardless of the direc-

tion choices made, if one consistently follows these rules the final algebraic IO95

equation for the RSSR will not differ from the result presented in this paper.
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Each of the two S joints of the RSSR can be modelled as three R joints whose

rotation axes are mutually orthogonal and intersect at the sphere centre. Hence,

eight coordinate frames are attached to the linkage. The chosen coordinate

systems are illustrated in Fig. 2 and the corresponding DH parameters are to100

be found in Tab. 1. Note that the only link twist that is a design parameter is

τ8. The twists between the three mutually orthogonal R joint axes comprising

the S joints are ±π. We arbitrarily use the positive value, as the sign has no

impact on the resulting algebraic IO equation.

Figure 2: An arbitrary RSSR mechanism.

Table 1: DH parameters for the RSSR mechanism.

joint axis i joint angle θi link offset di link length ai link twist τi

1 θ1 d1 a1 0

2 θ2 0 0 π/2

3 θ3 0 0 π/2

4 θ4 0 a4 0

5 θ5 0 0 π/2

6 θ6 0 0 π/2

7 θ7 0 a7 0

8 θ8 d8 a8 τ8
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The DH convention uses two screw displacements to describe the coordinate

transformation of joint i relative to joint i − 1. The two screw displacements

consist of one pure rotation, T(θi) or T(τi), and one pure translation, T(di) or

T(ai), each. More precisely, the transformation between two sequential coordi-

nate frames is obtained as

i−1
i T = T(θi) ·T(di) ·T(ai) ·T(τi), (1)

where105

T(θi) =


1 0 0 0

0 cos(θi) − sin(θi) 0

0 sin(θi) cos(θi) 0

0 0 0 1

 ; T(di) =


1 0 0 0

0 1 0 0

0 0 1 0

di 0 0 1

 ;

T(ai) =


1 0 0 0

ai 1 0 0

0 0 1 0

0 0 0 1

 ; T(τi) =


1 0 0 0

0 1 0 0

0 0 cos(τi) − sin(τi)

0 0 sin(τi) cos(τi)

 .

In the remainder of this paper, the tangent half angle substitutions for the

angle parameters vi = tan(θi/2) and αi = tan(τi/2) will be used [22] in order

to algebraise the transformations. This implies that

cos θi =
1− v2i
1 + v2i

, sin θi =
2vi

1 + v2i
, (2)

cos τi =
1− α2

i

1 + α2
i

, sin τi =
2αi

1 + α2
i

. (3)

We begin with a serial RSSR kinematic chain and determine the forward kine-

matics. The required multiplication of the individual DH transformation ma-

trices from one coordinate frame to another yields the overall homogeneous

transformation matrix that describes the relationship between the first and last

coordinate frames. To close the kinematic chain, we want the first and last coor-

dinate systems to align in both their orientation and origin. Algebraically, this is
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specified using the kinematic closure equation, where the overall transformation

equates to the identity [16]
8∏

i=1

i−1
i T = I. (4)

The elements of this algebraic DH transformation matrix are then directly110

mapped into Study’s kinematic image space where the constraint manifold could

be analysed as it was successfully demonstrated for the planar 4R, spherical 4R,

and Bennett linkage [10, 11]. However, applying Gröbner bases or other elimi-

nation methods the eight Study soma coordinates to symbolically obtain the IO

equation for the RSSR linkage is computationally too demanding for an alge-115

braic geometry approach. While very computationally demanding, a numerical

approach that uses the forward kinematics of the serial RSSR chain mapped

to the eight soma coordinates, described in Section 5, using pseudowitness sets

leads directly to the desired IO equation.

Still, an efficient and elegant algebraic geometry approach, which, for ex-

ample, has already been successfully applied in [8], is to conceptually split the

closure equation in two by multiplying both sides by the inverses of half of the

DH transformations. In the case of the RSSR, the closure equation becomes

0
1T

1
2T

2
3T

3
4T = I 7

8T
−1 6

7T
−1 5

6T
−1 4

5T
−1. (5)

This step essentially divides the linkage into two serial chains joined at the120

4th coordinate frame located in the second S joint., i.e., one chain between the

coordinate frames 0 and 4, and one chain between the coordinate frames 4 and

8, which correspond to the expressions on the left and right sides of Eq. (5),

respectively, which we call the left RS and right RS dyads. Eq. (5) will be

used in Section 4 to obtain the algebraic IO equation by projecting it to the125

image space. However, before we proceed we will briefly recall Study’s kinematic

mapping [5, 6].
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3. Study’s Kinematic Mapping

The homogeneous transformation matrices in Eqs. (4) and (5) represent a

subgroup of the group of spatial Euclidean displacements, SE(3), with respect

to a relatively non-moving coordinate frame. There are several possibilities to

parameterise this rigid body displacement group, one of them being the kine-

matic mapping that was originally formulated by Eduard Study and reported

in an appendix of his book “Geometrie der Dynamen” [5] in 1903. It defines

every distinct Euclidean displacement as a distinct point on a six-dimensional

quadric hyper-surface in a seven-dimensional projective space P7 now known

as the Study quadric, S2
6 . A point on S2

6 consists of eight homogeneous co-

ordinates, not all zero, x = [x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3]
T which

Study called a “soma”, a Greek word meaning “body”. The hyper-surface is a

seven-dimensional bilinear hyper-quadratic equation given by

x0y0 + x1y1 + x2y2 + x3y3 = 0, (6)

excluding the exceptional generator, which we call A∞, where x0 = x1 = x2 =

x3 = 0, having the parametric representation

[0 : 0 : 0 : 0 : y0 : y1 : y2 : y3].

A∞ does not represent any real displacement, but it nonetheless plays an im-

portant role as a generator space. For a soma to represent a real displacement130

in SE(3), it must satisfy two conditions: the first being Eq. (6); the second

being the inequality

x2
0 + x2

1 + x2
2 + x2

3 ̸= 0. (7)

Eq. (6) contains only bilinear cross terms. This implies that the quadric has

been rotated out of its standard position, or normal form [23, 24]. It is straight-

forward to diagonalise the quadratic form of Eq. (6) which reveals that this

six-dimensional quadric in P7 has the normal form

x2
0 + x2

1 + x2
2 + x2

3 − y20 − y21 − y22 − y23 = 0, (8)
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which is analogous to the Plücker quadric, P 2
4 , of line geometry [25]. The

normal form of S2
6 shows that it is a seven-dimensional hyperboloid of one sheet

doubly-ruled by special 3-space generators in two opposite reguli, which we call135

A-planes and B-planes, after [26].

It can be shown that lines on S2
6 represent either a one parameter set of

translations or rotations [26]. The lines which contain the identity array [1 : 0 :

0 : . . . : 0]T , which Study called the “protosoma”, are either the one parameter

rotation or translation subgroups. The exceptional generator A∞ is an A-plane.140

In general, two different A-planes do not intersect, nor do two different B-planes,

but there are exceptions [27]. An A-plane corresponds to SO(3) if it contains

the identity and its intersection with A∞ is the empty set, and to SE(2) if it

contains the identity and intersects A∞ in a line. These two types of A-planes

intersect each other in lines on S2
6 . Each of these lines represent rotations about145

the line orthogonal to the plane of the planar displacement and through the

centre point of the spherical displacement [27, 28]. The only B-planes that

intersect A∞ correspond to the subgroup of all translations. The intersection

of an A-plane and a B-plane is either a point, or a two dimensional plane [29].

Given a transformation matrix whose rotation elements are denoted as aij150

with i, j ∈ {1, 2, 3} and whose translation vector elements are denoted as tk

with k ∈ {1, 2, 3}, then the corresponding Study soma coordinates, also known

as Study parameters, are obtained in the following way. The homogeneous

quadruple x0 : x1 : x2 : x3 can be obtained from at least one of the following

ratios:155

x0 : x1 : x2 : x3 = 1 + a11 + a22 + a33 : a32 − a23 : a13 − a31 : a21 − a12;

= a32 − a23 : 1 + a11 − a22 − a33 : a12 + a21 : a31 + a13;

= a13 − a31 : a12 + a21 : 1− a11 + a22 − a33 : a23 + a32;

= a21 − a12 : a31 + a13 : a23 + a32 : 1− a11 − a22 + a33. (9)

The remaining four coordinates y0 : y1 : y2 : y3 are linear combinations of the
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xi and ti and are computed as

y0 = 1
2 (t1x1 + t2x2 + t3x3), y1 = 1

2 (−t1x0 + t3x2 − t2x3),

y2 = 1
2 (−t2x0 − t3x1 + t1x3), y3 = 1

2 (−t3x0 + t2x1 − t1x2).

(10)

Hence, the mechanical constraints imposed by the type of joints used in the

kinematic chains of the RSSR are mapped onto Study’s quadric. The result is

a parametric represenation in terms of Study soma coordinates of the contraint

manifold [30].

The image of the overall DH transformation of the RSSR linkage, Eq. (4),

in terms of Study parameters yields

x0 = 2v1v2v3v4v5v6v7v8 − 2v1v2v3v4v5v6 + ...+ 2α8v6v8 + 2v7v8 − 2,

x1 = 2α8v1v2v3v4v5v6v7v8 − 2α8v1v2v3v4v5v6 + ...+ 2α8v7v8 − 2α8,

x2 = − 2α8v1v2v3v4v5v6v7 − 2α8v1v2v3v4v5v6v8 + ...− 2α8v7 − 2α8v8,

x3 = − 2v1v2v3v4v5v6v7 − 2v1v2v3v4v5v6v8 + ...+ 2α8v6 − 2v7 − 2v8, (11)

y0 = − a1α8v1v2v3v4v5v6v7v8 + a4α8v1v2v3v4v5v6v7v8 + ...− α8a8,

y1 = a1v1v2v3v4v5v6v7v8 − a4v1v2v3v4v5v6v7v8 + ...+ a1 + a4 + a7 + a8,

y2 = − α8d1v1v2v3v4v5v6v7v8 − α8d8v1v2v3v4v5v6v7v8 + ...+ α8d8,

y3 = − d1α8v1v2v3v4v5v6v7v8 − d8v1v2v3v4v5v6v7v8 + ...+ d1 + d8.

As these polynomials are extremely large, each containing 128 very large terms,160

only the beginning and end of the expressions sorted using graded lexicographic

ordering with v1 > v2 > . . . > v8 are displayed here. These polynomials will be

solved numerically in Section 5, but are otherwise too cumbersome to deal with

using algebraic geometry and computer algebra software, such as Maple 2021.

For this we require a different approach.165

As mentioned earlier, this different approach involves conceptually splitting

the RSSR into two serial RS chains. In this way, mapping the left hand side

of Eq. (5), the left RS chain, into Study’s kinematic image space yields eight

significantly smaller polynomials

x0 = 4v1v2v3v4 − 4v1v3 − 4v2v3 − 4v3v4,
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x1 = − 4v1v2 + 4v1v4 + 4v2v4 + 4,

x2 = 4v1v2v4 + 4v1 + 4v2 − 4v4,

x3 = − 4v1v2v3 − 4v1v3v4 − 4v2v3v4 + 4v3, (12)

y0 = − 2d1v1v2v3 − 2d1v1v3v4 − 2d1v2v3v4 + 2a1v1v2 − 2a4v1v2 − 2a1v1v4

+ 2a4v1v4 + 2a1v2v4 + 2a4v2v4 + 2d1v3 + 2a1 + 2a4,

y1 = 2a1v1v2v3v4 − 2a4v1v2v3v4 + 2d1v1v2v4 − 2a1v1v3 + 2a4v1v3 + 2a1v2v3

+ 2a4v2v3 + 2a1v3v4 + 2a4v3v4 + 2d1v1 + 2d1v2 − 2d1v4,

y2 = 2a1v1v2v3 + 2a4v1v2v3 + 2a1v1v3v4 + 2a4v1v3v4 − 2a1v2v3v4 + 2a4v2v3v4

+ 2d1v1v2 − 2d1v1v4 − 2d1v2v4 + 2a1v3 − 2a4v3 − 2d1,

y3 = − 2d1v1v2v3v4 + 2a1v1v2v4 + 2a4v1v2v4 + 2d1v1v3 + 2d1v2v3 + 2d1v3v4

+ 2a1v1 + 2a4v1 − 2a1v2 + 2a4v2 + 2a1v4 − 2a4v4.

And finally, mapping the right hand side of Eq. (5), the right RS chain, into

Study’s kinematic image space yields eight additional smaller polynomials

x0 = 4v5v6v7v8 − 4v5v6 − 4α8v5v7 − 4α8v5v8 − 4v6v7 − 4v6v8 + 4α8v7v8 − 4α8,

x1 =− 4α8v5v6v7v8 + 4α8v5v6− 4v5v7− 4v5v8 + 4α8v6v7 + 4α8v6v8 + 4v7v8− 4,

x2 = 4α8v5v6v7 + 4α8v5v6v8 + 4v5v7v8 + 4α8v6v7v8 − 4v5 − 4α8v6 + 4v7 + 4v8,

x3 = 4v5v6v7 + 4v5v6v8 − 4α8v5v7v8 + 4v6v7v8 + 4α8v5 − 4v6 − 4α8v7 − 4α8v8,

y0 =− 2a7α8v5v6v7v8 + 2a8α8v5v6v7v8 − 2d8v5v6v7 − 2d8v5v6v8 − 2α8d8v5v7v8

− 2d8v6v7v8 − 2a7α8v5v6 − 2a8α8v5v6 + 2a7v5v7 + 2a8v5v7 − 2a7v5v8

+ 2a8v5v8 − 2a7α8v6v7 − 2a8α8v6v7 + 2a7α8v6v8 − 2a8α8v6v8 + 2a7v7v8

− 2a8v7v8 + 2α8d8v5 + 2d8v6 − 2α8d8v7 − 2α8d8v8 + 2a7 + 2a8, (13)

y1 =− 2a7v5v6v7v8 + 2a8v5v6v7v8 + 2α8d8v5v6v7 + 2α8d8v5v6v8 − 2d8v5v7v8

+ 2α8d8v6v7v8 − 2a7v5v6 − 2a8v5v6 − 2a7α8v5v7 − 2a8α8v5v7 + 2a7α8v5v8

− 2a8α8v5v8 − 2a7v6v7 − 2a8v6v7 + 2a7v6v8 − 2a8v6v8 − 2a7α8v7v8

+ 2a8α8v7v8 + 2d8v5 − 2α8d8v6 − 2d8v7 − 2d8v8 − 2a7α8 − 2a8α8,

y2 = 2α8d8v5v6v7v8 − 2a7v5v6v7 − 2a8v5v6v7 + 2a7v5v6v8 − 2a8v5v6v8
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− 2a7α8v5v7v8 + 2a8α8v5v7v8 + 2a7v6v7v8 − 2a8v6v7v8 − 2α8d8v5v6

− 2d8v5v7 − 2d8v5v8 − 2α8d8v6v7 − 2α8d8v6v8 + 2d8v7v8 − 2a7α8v5

− 2a8α8v5 +2a7v6 +2a8v6 +2a7α8v7 +2a8α8v7 −2a7α8v8 +2a8α8v8−2d8,

y3 = 2d8v5v6v7v8 + 2a7α8v5v6v7 + 2a8α8v5v6v7 − 2a7α8v5v6v8 + 2a8α8v5v6v8

− 2a7v5v7v8 + 2a8v5v7v8 − 2a7α8v6v7v8 + 2a8α8v6v7v8 − 2d8v5v6

+2α8d8v5v7 +2α8d8v5v8 −2d8v6v7 −2d8v6v8 −2α8d8v7v8 −2a7v5 −2a8v5

− 2a7α8v6 − 2a8α8v6 + 2a7v7 + 2a8v7 − 2a7v8 + 2a8v8 + 2α8d8.

The polynomials of Eqs. (12) and (13) will be manipulated in Section 4 using the

linear implicitisation algorithm [12] to reveal the algebraic RSSR IO equation.

4. Algebraic Geometry Approach

To obtain the RSSR algebraic IO equation, the parametric equations of

the Study coordinates of Eqs. (12) and (13) need to be expressed implicitly170

as a polynomial equation in the desired motion parameters v1 and v8 in the

seven-dimensional kinematic mapping image space. This requires an algorithm

that eliminates the unwanted motion parameters vi where i ∈ {2, . . . , 7}. One

implicitisation algorithm that allows for the transformation from the explicit

parametric Study representation into a set of implicit polynomial equations is175

known as the linear implicitisation algorithm. The resulting constraint equa-

tions are implicit polynomials that form an algebraic variety in P7 and can be

manipulated with different tools to obtain the IO equation. A detailed descrip-

tion of the linear implicitisation algorithm, together with illustrative examples

is to be found in [6, 12].180

The two serial RS chains of the RSSR linkage consist of one revolute and

one spherical joint each. Clearly, the S joint spherical displacements, SO(3),

are completely contained on sub-spaces of the Study quadric as there is no

translation involved and thus, all four yi Study coordinates are identically zero.

In other words, the displacements constrained by the S joints form special A-185

planes on the Study quadric. Further, the R joint in the serial RS chain rotates
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the S joint in a planar displacement thereby moving this special A-plane on S2
6 .

It is well known that a 3-space can be represented by the intersection of four

hyperplanes in the kinematic image space. To determine the RSSR algebraic IO

equation we must identify these hyperplanes, one set for each serial RS chain.190

To obtain their implicit equations the linear implicitisation algorithm will be

employed. The main goal of the linear implicitisation algorithm is to find the

minimal number of implicit equations that describe the mechanical constraints

in the image space. It allows for the elimination of motion parameters which, in

the case of the RSSR, correspond to the variables v2, v3, . . . , v7. On the other195

hand, the design parameters ai, di and αi are fixed values that depend on the

chosen linkage. However, to obtain the implicit polynomials for the spherical

special 3-spaces v1 and v8 are temporarily also considered as design parameter

constants.

To begin, we assume that the resulting variety is defined by linear constraint

equations, and hence a general linear ansatz polynomial can be written, using

the graded reverse lexicographic monomial ordering [31], as

C1y3 + C2y2 + C3y1 + C4y0 + C5x3 + C6x2 + C7x1 + C8x0 = 0. (14)

This linear ansatz polynomial has eight unknown coefficients Ci, i ∈ {1, · · · , 8}.
In the case of the left hand side of the RSSR chain, Eq. (12) is substituted into

Eq. (14) and after reorganising such that the variable angle parameters of the

14



spherical displacement are collected, yields

(−2C1d1v1 + 2C3a1v1 − 2C3a4v1 + 4C8v1 − 2C4d1 − 2C2a1 + 2C2a4 − 4C5)v2v3v4

+ (2C2a1v1 + 2C2a4v1 − 2C4d1v1 − 4C5v1 + 2C1d1 + 2C3a1 + 2C3a4 − 4C8)v2v3

+ (2C1a1v1 + 2C1a4v1 + 2C3d1v1 + 4C6v1 − 2C2d1 + 2C4a1 + 2C4a4 + 4C7)v2v4

+ (2C2d1v1 + 2C4a1v1 − 2C4a4v1 − 4C7v1 − 2C1a1 + 2C1a4 + 2C3d1 + 4C6)v2

+ (2C2a1v1 + 2C2a4v1 − 2C4d1v1 − 4C5v1 + 2C1d1 + 2C3a1 + 2C3a4 − 4C8)v3v4

+ (2C1d1v1 − 2C3a1v1 + 2C3a4v1 − 4C8v1 + 2C2a1 − 2C2a4 + 2C4d1 + 4C5)v3

+ (−2C2d1v1 − 2C4a1v1 + 2C4a4v1 + 4C7v1 + 2C1a1 − 2C1a4 − 2C3d1 − 4C6)v4

+ (2C1a1v1 + 2C1a4v1 + 2C3d1v1 + 4C6v1 − 2C2d1 + 2C4a1 + 2C4a4 + 4C7) = 0.

(15)

To fulfil this equation, the coefficients of the motion parameters in Eq. (15)

must vanish since the v2, v3, and v4 orientation angle parameters are, in general

non-zero. In matrix form, this can be expressed as

2a1v1 + 2a4v1 −2d1 2d1v1 2a1 + 2a4 0 4v1 4 0

−2d1v1 −2a1 + 2a4 2a1v1 − 2a4v1 −2d1 −4 0 0 4v1

−2a1 + 2a4 2d1v1 2d1 2a1v1 − 2a4v1 0 4 −4v1 0

2a1v1 + 2a4v1 −2d1 2d1v1 2a1 + 2a4 0 4v1 4 0

2d1 2a1v1 + 2a4v1 2a1 + 2a4 −2d1v1 −4v1 0 0 −4

2d1 2a1v1 + 2a4v1 2a1 + 2a4 −2d1v1 −4v1 0 0 −4

2d1v1 2a1 − 2a4 −2a1v1 + 2a4v1 2d1 4 0 0 −4v1

2a1 − 2a4 −2d1v1 −2d1 −2a1v1 + 2a4v1 0 −4 4v1 0





C1

C2

C3

C4

C5

C6

C7

C8



=



0

0

0

0

0

0

0

0



.

Solving for the unknown Ci and back-substituting their solutions into the gen-

eral linear ansatz polynomial Eq. (14) reveals all four hyperplanes that satisfy

the variety in P7. The solution shows that C1, C3, C4, and C8 are all free

parameters with arbitrary values while C2, C5, C6, and C7 are expressions con-

taining the design parameters and, after simplifying, are each linear in four

of the Study parameters, and therefore hyperplanes. These four hyperplanes

collected in terms of the Study parameters are

0 = (a21v
2
1 − a24v

2
1 + d21v

2
1 + a21 − a24 + d21)x3 + (−2d1v

2
1 − 2d1)y0

+ 4a1v1y1 + (2a1v
2
1 − 2a4v

2
1 − 2a1 − 2a4)y2, (16)

0 = (a21v
2
1 − a24v

2
1 + d21v

2
1 + a21 − a24 + d21)x2 − 4a1v1y0 + (−2d1v

2
1 − 2d1)y1
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+ (−2a1v
2
1 + 2a4v

2
1 + 2a1 + 2a4)y3, (17)

0 = (a21v
2
1 − a24v

2
1 + d21v

2
1 + a21 − a24 + d21)x1 + (2a1v

2
1 + 2a4v

2
1 − 2a1 + 2a4)y0

+ (2d1v
2
1 + 2d1)y2 − 4a1v1y3, (18)

0 = (a21v
2
1 − a24v

2
1 + d21v

2
1 + a21 − a24 + d21)x0 + (−2a1v

2
1 − 2a4v

2
1 + 2a1 − 2a4)y1

+ 4a1v1y2 + (2d1v
2
1 + 2d1)y3. (19)

The same procedure can be done with the right hand side of the RSSR by

substituting Eq. (13) in the general linear ansatz polynomial, Eq. (14). In

this case, the motion parameters to be eliminated are v5, v6 and v7. Solving

the resulting homogeneous matrix equation for the new unknown Ci yields the

following four hyperplanes in a similar way. They are

0 = (a27α
2
8v

2
8 − 2a7a8α

2
8v

2
8 + a28α

2
8v

2
8 + α2

8d
2
8v

2
8 + a27v

2
8 − 2a8a7v

2
8

+ a28v
2
8 + d28v

2
8 + α2

8a
2
7 + 2a7a8α

2
8 + a28α

2
8 + α2

8d
2
8 + a27 + 2a7a8 + a28 + d28)x3

+ (−2α2
8d8v

2
8 + 2d8v

2
8 + 8a7α8v8 − 2α2

8d8 + 2d8)y0

+ (−4d8α8v
2
8 − 4α2

8a7v8 + 4a7v8 − 4d8α8)y1

+ (−2a7α
2
8v

2
8 + 2α2

8a8v
2
8 − 2a7v

2
8 + 2a8v

2
8 + 2a7α

2
8 + 2α2

8a8 + 2a7 + 2a8)y2,

(20)

0 = (a27α
2
8v

2
8 − 2a7a8α

2
8v

2
8 + a28α

2
8v

2
8 + α2

8d
2
8v

2
8 + a27v

2
8 − 2a8a7v

2
8

+ a28v
2
8 + d28v

2
8 + α2

8a
2
7 + 2a7a8α

2
8 + a28α

2
8 + α2

8d
2
8 + a27 + 2a7a8 + a28 + d28)x2

+ (4d8α8v
2
8 + 4α2

8a7v8 − 4a7v8 + 4d8α8)y0

+ (−2α2
8d8v

2
8 + 2d8v

2
8 + 8a7α8v8 − 2α2

8d8 + 2d8)y1

+ (2a7α
2
8v

2
8 − 2α2

8a8v
2
8 + 2a7v

2
8 − 2a8v

2
8 − 2a7α

2
8 − 2α2

8a8 − 2a7 − 2a8)y3,

(21)

0 = (a27α
2
8v

2
8 − 2a7a8α

2
8v

2
8 + a28α

2
8v

2
8 + α2

8d
2
8v

2
8 + a27v

2
8 − 2a8a7v

2
8

+ a28v
2
8 + d28v

2
8 + α2

8a
2
7 + 2a7a8α

2
8 + a28α

2
8 + α2

8d
2
8 + a27 + 2a7a8 + a28 + d28)x1

+ (−2a7α
2
8v

2
8 + 2α2

8a8v
2
8 − 2a7v

2
8 + 2a8v

2
8 + 2a7α

2
8 + 2α2

8a8 + 2a7 + 2a8)y0

+ (2α2
8d8v

2
8 − 2d8v

2
8 − 8a7α8v8 + 2α2

8d8 − 2d8)y2

+ (4d8α8v
2
8 + 4α2

8a7v8 − 4a7v8 + 4d8α8)y3, (22)
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0 = (a27α
2
8v

2
8 − 2a7a8α

2
8v

2
8 + a28α

2
8v

2
8 + α2

8d
2
8v

2
8 + a27v

2
8 − 2a8a7v

2
8

+ a28v
2
8 + d28v

2
8 + α2

8a
2
7 + 2a7a8α

2
8 + a28α

2
8 + α2

8d
2
8 + a27 + 2a7a8 + a28 + d28)x0

+ (2a7α
2
8v

2
8 − 2α2

8a8v
2
8 + 2a7v

2
8 − 2a8v

2
8 − 2a7α

2
8 − 2α2

8a8 − 2a7 − 2a8)y1

+ (−4d8α8v
2
8 − 4α2

8a7v8 + 4a7v8 − 4d8α8)y2

+ (2α2
8d8v

2
8 − 2d8v

2
8 − 8a7α8v8 + 2α2

8d8 − 2d8)y3. (23)

Solving Eqs. (16), . . ., (19) for the four yi and substituting these expressions into200

Eqs. (20), . . . , (23) leaves four equations in the four unknown Study parameters

xi. This suggests solving the system of four equations for the four unknown xi.

However, doing so leads only to the trivial solution xi = yi = 0, i ∈ {0, 1, 2, 3},

which we call the null point. This result can be explained geometrically in P7 as

follows: the two special 3-spaces representing the displacements of the S joints205

are two SO(3) A-planes that are moved around on S2
6 under the action of the

two R joints, and only ever intersect in the null point.

But, there is a solution. Further inspection of the four equations shows

that the equations form a homogeneous system of linear equations. Expressing

this linear homogeneous system in matrix-vector form Ax = 0, we know that

this system only has a nontrivial solution when the determinant of the 4 × 4

coefficient matrix A with respect to the xi vanishes [32]. Thus, after computing

the determinant and omitting the factors that can never vanish, the general

algebraic IO equation of the RSSR linkage arises directly from the determinant

as

Av21v
2
8 + 8d1α8a7v

2
1v8 + 8d8α8a1v1v

2
8 +Bv21

+8a1a7(α8 − 1)(α8 + 1)v1v8 + Cv28 + 8d8α8a1v1 + 8d1α8a7v8 +D = 0,

(24)

where

A = (α2
8 + 1)A1A2 +R,

B = (α2
8 + 1)B1B2 +R,

C = (α2
8 + 1)C1C2 +R,

D = (α2
8 + 1)D1D2 +R,

17



and

A1 = (a1 − a4 + a7 − a8), A2 = (a1 + a4 + a7 − a8),

B1 = (a1 + a4 − a7 − a8), B2 = (a1 − a4 − a7 − a8),

C1 = (a1 − a4 − a7 + a8), C2 = (a1 + a4 − a7 + a8),

D1 = (a1 + a4 + a7 + a8), D2 = (a1 − a4 + a7 + a8),

R = (d1 − d8)
2α2

8 + (d1 + d8)
2.

Eq. (24) is an implicit biquadratic algebraic curve of degree 4 in the joint angle

parameters v1 and v8, as one would expect.

5. Numerical Approach210

The degree four algebraic IO equation for the RSSR expressed as Eq. (24)

will be compared to the result from a concomitant numerical method. The

aim for the numerical method is to compute an eliminant with the general

approach of numerical elimination theory [33, Ch. 16]. This involves perform-

ing computations using the given polynomial system from Eq. (11) and geo-215

metrically projecting points via pseudowitness sets [34]. For this problem, the

pseudowitness set provided that the degree of the eliminant is 8 in 9 variables

(v1, v8, α8, a1, a4, a7, a8, d1, d8). Since there are a total of
(
9+8
8

)
= 24310 mono-

mials of degree at most 8 in 9 variables, the approach is to use the pseudowitness

set to generate at least 24310 sample points and then to use interpolation to220

recover the eliminant [35, Ch. 6]. To gather these sample points, one randomly

fixes values of the parameters α8, a1, a4, a7, a8, d1, d8, and solves for the angle

parameter values, v1 and v8 using any of a variety of sampling methods within

numerical algebraic geometry [36, Sec. 2.3]. This yields precisely the same IO

equation as the LIA approach, Eq. (24).225

6. Geometric Verification

To verify both the algebraic and numerical results, the IO equation of an

arbitrary linkage was animated in GeoGebra. The model enabled measurement

18



of the output angle for any given input angle. Tracing the locus of each input-

output pair results in a curve which is compared with the herein derived IO230

equation, Eq. (24). The chosen design parameters for the example linkage are

a1 = 3, a4 = 5, a7 = 9, d8 = 3, a8 = 11 and τ8 = 60◦. While the result of the

(a) IO equation geometrically generated in Geo-

Gebra.
(b) Derived IO equation according to Eq. (24).

Figure 3: Example RSSR function generator with a1 = 3, a4 = 5, a7 = 9, d8 = 3, a8 = 11

and τ8 = 60◦.

GeoGebra file is displayed in Fig. (3a), substituting the same design parameters

into Eq. (24) yields the curve in Fig. (3b). As can be seen, the curves are

congruent which further suggests that Eq. (24) is indeed correct.235

7. Relation to the IO equation of the Planar 4R Linkage

Following [4, Sec. 11.4] the IO equation of the RSSR linkage can be directly

transformed into the IO equation of the planar 4R linkage since the planar 4R

is a special case of the RSSR. This requires substituting α8 = d1 = d8 = 0

into Eq. (24). After renaming the link lengths and the output angle such that

the coupler becomes a2, the output link a3, the base link a4, and the angle of

the output v4 instead of the notation from Fig. (2), i.e., a4, a7, a8, and v8,

respectively, the RSSR IO equation reduces to

Av21v
2
4 +Bv21 − 8a1a3v1v4 + Cv24 +D = 0, (25)
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where

A = (a1 − a2 + a3 − a4)(a1 + a2 + a3 − a4) = A1A2,

B = (a1 + a2 − a3 − a4)(a1 − a2 − a3 − a4) = B1B2,

C = (a1 − a2 − a3 + a4)(a1 + a2 − a3 + a4) = C1C2,

D = (a1 + a2 + a3 + a4)(a1 − a2 + a3 + a4) = D1D2,

which is the same IO equation as derived in [10] for planar 4R linkages.

8. Conclusions

In recent publications [10, 11] it was shown that Study’s kinematic image240

space and elimination theory provide an excellent, straight forward tool to de-

rive algebraic IO equations for planar, spherical, and Bennett linkages. In this

paper, the same method was extended to arbitrary spatial four-bar linkages,

namely the RSSR. After describing the linkage with standard DH parameters

and mapping the closure equation into Study’s kinematic image space, the in-245

termediate motion parameters were eliminated with two concomitant methods:

algebraically using the linear implicitisation algorithm; and numerically using

pseudowitness sets to generate points and then interpolation to recover the

eliminant. Both methods lead to the same IO equation containing four more

complicated coefficients of the input and output angles compared to the planar250

4R, but clearly containing the algebraic IO equation of planar 4R linkages as a

subset. This IO equation was additionally verified using a geometric animation

in GeoGebra. It is intriguing to consider further investigation of the structure of

the herein derived algebraic IO equation, how it relates to the linkage mobility,

coupler motion, and how it can be used for type and dimensional continuous255

algebraic synthesis.
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